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The two-site model is developed for the analysis of stress relaxation data. It is shown that 
the product of d In (-- d)/do and (o -- ai) is constant where a is the applied stress, oi is the 
(deformation-induced) internal stress and 6 = do/dt. The quantity d In (-- d)/do is often 
presented in the literature as the "(experimental) activation volume", and there are many 
examples in which the above relationship with (o -- oi) holds true. This is in apparent 
contradiction to the arguments that lead to the association of the quantity d In (-- 6)/de 
with the activation volume, since these normally start with the premise that the activation 
volume is independent of stress. In the modified theory presented here the source of this 
anomaly is apparent. Similar anomalies arise in the estimation of activation volume from 
creep or constant strain rate tests and these are also examined from the standpoint of the 
site model theory. In the derivation presented here full account is taken of the site popu- 
lation distribution and this is the major difference compared to most other analyses. The 
predicted behaviour is identical to that obtained with the standard linear solid. Consider- 
ation is also given to the orientation-dependence of stress-aided activation. 

1. Introduction 
In common with other classes of  materials, poly- 
mers show a sigmoidal stress relaxation character- 
istic when stress, a, is plotted against the logarithm 
of  time, (In t). This is illustrated in Fig. 1 in which 
it is seen that the stress decays asymptotically to a 
limit, oi, that is often described as the "internal 
stress". It will be shown that a non-zero limiting 
value follows from the two-site theory. 

In theories based on the concept o f  stress-aided 
thermal activation, deformation or stress relaxa- 
tion is considered to be the result of  a large num- 
ber of  similar events on the molecular level, involv- 
ing localized motions of  segments or possibly side 
groups of  molecules. These events can be 
thermally activated and the presence of  a stress 
may  bias the reaction. This can be illustrated by 
reference to Fig. 2 which shows a potential well 
corresponding to the energy state of  a particular 
segment or side group. In the unstressed state the 
height o f  the energy barrier is AG and the prob- 
ability that the jumping element will surmount the 
barrier and move to a new state, (not shown), is 

proportional to exp(--AG/kT) where k is the 
Boltzmann constant and Tis  the absolute tempera- 
ture. On application of  a stress o in such a 
direction that work is done by the force when the 
segment moves over the barrier, then the barrier is 
effectively lowered. It is normally assumed that 
this change in barrier height is proportional to the 
stress and this is shown in Fig. 2. The constant o f  
proportionality must have the dimensions of  
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Figure 1 Schematic form of stress relaxation. 
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Figure 2 Potential barrier for a segment of a molecule, 
showing the modification produced by an applied stress, 
O .  

volume and this quantity, V, is often termed the 
"activation volume". A physical model that 
coincides with this definition is developed by 
associating V with the volume swept out by the 
moving segment as it proceeds to the top of the 
energy barrier. The probability that the segment 
will transform during a given interval will now 
become proportional to exp [(--AG + Vcr)/kT]. 
Each individual conformational change of a par- 
ticular type, (e.g. Site 1 -+ Site 2), can be assumed 
to produce a fixed incremental change in the un- 
stressed dimensions of the body and can be 
expressed as an overall change in strain, Ae. In 
most of the experimental studies to which this 
analysis is directed the stresses used are 
< 2 0 M N m  -2 and it is expected that the energy- 
elastic response will be linear or very nearly linear, 
and that any non-linearity will be associated with 
the entropic response, (which is dealt with by the 
site model theory developed herein). Thus, when a 
change in conformation (= unit change in site 
population distribution) takes place, giving a 
change Ae in the unstressed strain of the test- 
piece, the stress relief afforded if the test-piece is 
maintained at constant deformation, (stress relaxa- 
tion test), will be proportional to Ae and therefore 
is itself a constant, (Aa). In a stress relaxation 
experiment it thus follows that: 

+ vo) 
--d____e = A e x p ,  = d, ( I )  

dt  

where A is a constant and hence 

in (-- O) = in A --  AG + V o  (2) 
kT  kT  

whence 
d ln ( - -d )  V 

�9 ( 3 )  
do kT 

In this analysis the following assumptions are 
implicit: 

(1)That  the segment will not return to its 
original state by surmounting the activation barrier 
in the opposite direction; that is, backward move- 
ment is discounted; and 

(2) that there is no influence of the population 
distribution of the different types of site available 
to the jumping elements. 

In the theory that follows both of these factors 
are taken into account. It is clear that Assumption 
1 will be invalid if the potential minima on either 
side of the activation barrier are closely similar. As 
for Assumption 2, one way in which the popula- 
tion distribution effect might be deemed 
unimportant would be if movement over the 
potential barrier re-created a site of the same kind. 
Such might be the case in the motion of a disloca- 
tion through a large single crystal or in the slip of 
molecules in a polymer melt. Clearly, in either of 
these examples Assumption 1 would not be valid. 
It is expected that in most instances backward 
motion will be important, while the introduction 
of the site population dependency is shown to 
modify the theory to give better accord with 
experimental observations. 

In the analysis presented below it is assumed 
that the material is homogeneous and free from 
(residual) moulding stresses. 

2. The  two-s i te  m o d e l  
2.1. Basic t h e o r y  
The two-site model can be explained by reference 
to Fig. 3. Suppose that sufficient time has elapsed 
in the unstressed state to enable the establishment 
of a dynamic equilibrium between Sites 1 and 2 
such that the following equation is fulfilled 

T z-- -- -I i/ /i ? 
/i/ i/1/ 

~,,~\,,, ," _ ,.' 

_hVl2 ~ 

SITE I SITE 2 
Figure 3 Energy diagram for a molecule segment that can 
exist in one of two isomeric forms, (Site 1 and Site 2). 
The energy levels are modified in the presence of an 
applied stress as shown by broken lines for the case in 
which the stress favours jumps in the direction 1 ~ 2. 
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0 0 0 0 N,~ ,2  = N2co2,, (4) 

where N o andN ~ are the populations of Site 1 and 
Site 2, respectively, and co ~ represents the 
frequency with which successful attempts are 
made at surmounting the potential barrier in the 
direction i -+f. We can therefore write 

exp  ( 
co ~ exp (--AG2/kT) exp 

= exp \ - - ~ ] ,  (5) 

where 
6AG = AG1-- AG2. (6) 

In the presence of a stress, o, jumps in one direc- 
tion will be assisted, (e.g. by lowering the barrier 
by V120 for jumps 1 -+ 2 in the example illustrated 
in Fig. 3), while those in the opposite direction 
will be opposed, the barrier increasing by V2to. 
The jump frequencies alter correspondingly and as 
a consequence the site populations will change. 
The rate of change of site population distribution 
can be derived in a straightforward manner as des- 
cribed by Ward [1], and is given by [1,2] 

d&N 
----- N , cA ,2 (V ,2  + V21)a/kT, dt + AN(c~176 + c~176 o o 

(7) 
where AN is the change in site population, as 
referred to the original state, (i.e. A N =  [iV ~  
Nl(t)] for the case shown in Fig. 3 in which the 
stress causes a reduction in population of Type 1 
sites). In arriving at ~ Equation 7 two approxima- 
tions have been made [1, 2]. Firstly, it has been 
assumed that the stress is sufficiently small to 
make the approximation 

Vo Vo 
exp~-f "~ 1 +--'kT (8) 

Secondly, it has been assumed that 

IAN(VI~o2_ V~,~oOl)l < o o NI~,~(V,2 + V21). 

(9) 
The validity of these assumptions will be examined 
in Section 2.5.1. 

Ward [1] shows that for creep under constant 
stress, Equation 7 may be rewritten with strain as 
the dependent variable by making the assumption 
that each unit change in site population gives an 
equal increment of strain. An analogous procedure 
has been used for the case of stress relaxation [2] 
leading to the equation 

= oo(~O + ~ o ) ,  (10) 

where % is the initial stress at t = 0, and &o is the 
increment of stress relaxation per unit site popula- 
tion change, i.e. 

a = Oo--&N&o. ( l l )  

It is convenient to re-write Equation 10 as 

do 
+ Ca = Dao, (10a) 

dt 

where C and D are functions of temperature but 
are independent of stress. The solution is 

D 
a = ao exp (-- Ct) + ~Oo [ 1 -- exp (-- Ct)]. 

(12) 
This function decays asymptotically to a non-zero 
value of stress, (D/C)oo, as shown schematically in 
Fig. 1. This limiting stress ai, [=(D/C)oo], 
corresponds to a new equilibrium state for which 
we may write 

N1 =r = N2=co2,(oi) , (13) 

where o (V12al) 1 
c~,2(ai) = co,2exp k T  

and o ex [--V2,ai~[ (14) 
602,(00 coz, p~ kT I )  

again using the condition represented by Fig. 3 
and keeping V12 and V2, positive. 

2.2. The (exper imental)  act ivat ion volume 
It  is explained above why the quantity din (--d)/ 
do is often evaluated for stress relaxation tests and 
used in the estimation of the "(experimental) 
activation volume." If we allow for backward 
jumps then we can consider the rate of stress relax- 
ation to be proportional to 

(-,~a, + V,2,~) 
X = Nlexp \ kT 

[--AG2-- 
--N2exp t -k--~V21(l), (15) 

where N1, N2 and a are time-varying quantities. 
Near the beginning of the test N1 ~--N ~ and N2 
N ~ and 

 Oexp( ) 
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x exp - - e x p \  kT ]1" 

If Vt2 = V21, as might be expected for a sym- 
metrical barrier, then 

X0 = N~ t ~ )  sinh \'--k- ~ - ] .  (17) 

This is the form commonly associated with Eyring 
and was originally derived to describe non- 
Newtonian viscous flow [3]. For this particular 
case it is probably justified to ignore the site popu- 
lation distribution and to make the symmetrical 
barrier assumption. 

It is apparent that the derived quantity 
d In (--O)/do has no particular significance in this 
framework unless o is sufficiently large to make 
valid the approximation 

(V,2ot ..~_ r 
sinh k kT ] exp~ kT ]" (18) 

An examination of the activation volume that 
takes into account backward jumps but not site 
population changes has been presented by Krausz 
[4]. The same author has also investigated the 
effect of having consecutive barriers of differing 
height [5], and although he includes terms to des- 
cribe the site population distribution no attempt is 
made to take into account the change in popula- 
tion that accrues when forward and backward jump 
frequencies are unequal. Further discussion by the 
original authors is to be found in their comprehen- 
sive review, [6]. 

It is quite common to find that "(experimental) 
activation volumes" estimated using the d In ( -  6)/ 
do formula are strongly dependent on o [7-12]. 
Kub{tt and co-workers show that for a large range 
of materials, including polymers, the product of 
o and d in (-- O)[do is approximately constant 
[7-11].  The values presented for the activation 
volume derived by this procedure are consequently 
extremely high at low stress but at high stresses 
the magnitudes are comparable to estimates of the 
volume swept out by the jumping element expec- 
ted to be involved in the relaxation. If it is admit- 
ted that the activation volume is not a constant, 
then Equation 1 is invalidated, so that the signifi- 
cance of d ln (-- O)/ do is clouded still further. 
Again it must be emphasized that any analysis 
based on Equation 17 can only apply to the begin- 
ning of the test, before the site population distri- 
bution has changed significantly. (As discussed 

above, this restriction may be relaxed in certain 
cases, as for example that originally addressed by 
Eyring). 

Other experimental techniques for measuring 
the activation volume share similar drawbacks. 
Creep results could be analysed by the same pro- 
cedure, using measurements of strain rate, d, at 
constant stress instead of 0 at constant e. We find 
by a similar route 

[ d lnt~ 
V = [ k T - - !  , (19) 

do ]T,e,P 

where tests at constant temperature, T, and pres- 
sure, P, are used to obtain strain rates for a series 
of different stress values and these are compared at 
a fixed strain, e, to obtain the differential 
coefficient. This procedure would further require 
that the "structure" of the material is uniquely 
determined by the strain, a point discussed below. 

Constant strain-rate tests have also been 
employed, again with the result that the computed 
value of the activation volume decreases as stress 
increases [13]. Another variation used in the esti- 
mation of the activation volume utilizes a constant 
strain-rate test in which a sudden change in strain- 
rate is imposed at a selected point in the test, 
[14-19].  This point can be the point at which 
yield occurs, and if the second rate, d~, is higher 
than the first, ~x, the material reverts to pre-yield 
behaviour [17]. In this way the activation volume 
at yield is supposed to be measured using the 
following formula [17]: 

In (~2/~1) 
V = 2kT , (20) 

a ~ ,  2 - -  Oy,  1 

where o~, ~ and o~,2 are the values of yield stress at 
strain-rates d, and t2, respectively. 

The activation volumes estimated by this 
method show a similar stress dependence to those 
discussed above [17] and further analysis of this 
procedure in terms of the modified site model 
theory will be presented in Section 5. One of the 
motives for conducting strain-rate jump experi- 
ments is to obtain information at different strain- 
rates on samples at "constant structure", (i.e. just 
before and just after the change in strain rate) 
[17-20]. In the present paper we identify "struc- 
ture" with site population distribution; earlier 
workers studying flow in metals identified "struc- 
ture" with dislocation density. We have not con- 
sidered the possibility that there is a deformation- 
dependent multiplication of "sites" in the poly- 
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meric materials with which we are concerned here, 
in contrast to the case met in metals in which dis- 
location multiplication is an important factor. 

Let us now turn to the site theory as developed 
in Section 2.1 in which full account has been 
taken of the shift in population. Beginning with 
Equation 10a we find 

d In (-- 6) C exp Ct - - - ;  (21) 
da (C--D)eo 

also, from Equation lOa we have 

(C--D) ao 
exp Ct = (22) 

Ca -- Dao 
whence 

dln(--d)  C 1 1 

da Ca --Dao a -- at a* ' 
(23) 

where a* = (a -- ai) is sometimes called the "effec- 
tive stress",. [7-1l ,  20-22]. In practice the 
product a*.dln(--O)/da has frequently been 
found to be constant [7-11] in agreement with 
the prediction given in Equation 23. This product 
is claimed by Kub~t and co-workers to be much 
larger than unity, but the data of Pink etaL [12], 
seems to be in good agreement with Equation 23. 

2.3. New method of determining activation 
volume 

In this section we will develop a procedure for 
evaluating (Va2 + V21) which follows from the site 
theory presented in Section 2.1 and which is free 
from the objections cited in Section 2.2 in which 
alternative procedures were discussed. 

From Equations 13 and 14 we can write that at 
the final equilibrium state in a stress relaxation 
test 

N"'c~176 .co~ = [-- (V,2 +k.T_V2i)ai]] 

N ' , -  exp (--6AG 1 
= N2, |  i T ]  (24) 

To eliminate the unknowns NL~ and N2,| we can 
utilize Equation 11 which at the final equilibrium 
state becomes 

Oi = a O - -  Aa(N ~ --ml,=) = ao -- Aa(Nz,=--N2~ 

(25) 
Substitution in Equation 24 give s 

k O+ <e-/  

\ ~-~ ai] (26) 

From Equations 4 and 5 we have 

\ k t  ] (27) 

and on substitution into Equation 26 this gives 

N? - [(Oo - o0/aa] 
( - ~ a c ~  + (oo-a ,  1 NI~ exp 
k ) 

~aa {-(v,~ +__ v~,)o,I. (2s) 
= exp - ~  exp kT J 

If the small stress approximation 

[-(V12+ V2,)ai} (V12+ V21)ai 
exp t k-T" = 1 kT 

(8a) 
is applied to the fight-hand side of Equation 28 
then after some rearrangement we obtain 

1 No+ : k r  ] \ ~--TZ ] at exp 

= ( a ~  ( l + e x p S A G l  (29) \ Aa ] - - i f ] "  
Taking reciprocals and rearranging leads to 

= 1 1 ~ ( V , 2 + V 2 ,  t N~ 
ai (frO-- ai) \ kT ] [1 + exp (6AG/kT)] 

6AG 
- 

+ V12___ V2z exp k T  tSAG (30) 
1+ exp kT ] 

Hence, for a series of specimens tested at different 
initial stress values a plot of 1/a i against 1/(ao -- ai) 
would give a straight line with gradient M and 
intercept c on the 1/O i axis where 

M = kT- ] l + e x p ~ ]  

and 
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SAG 
(.Vx2 + V21~ exp kT 

c = ! l - - -  ( 3 2 )  

t l  + exp ---~- ) 

Hence, 
M N~ 

- ( 3 3 )  
c 6AG 

exp - -  
kT 

From Equation 32 it is therefore possible to 
deduce that for the case of positive SAG, 

1 (V12+___V21~ <~c <~ (V12+ V211 (34) 
2 \  kr / \ / ?  ] 

while for negative SAG, 

a, 1 kr  ! > c. (35) 

While there may be exceptions it is expected 
that SAG will normally be positive, so that 
Equation 34 holds. To check this, rearrangement 
of Equation 33 gives 

c SAG 
in --  = -- In N~ (36) 

M kT 

and a plot of In c/M against 1/T for tests conducted 
at different temperatures gives a slope of (~AG/k). 
Preliminary results have confirmed that SAG is 
positive for a set of injection-moulded poly- 
methylmethacrylate bars, [23]. In this case SAG is 
sufficiently large that Equation 34 becomes 

c ~ . (37) 

If we characterize the process by the mean activa- 
tion volume 

_ V12+ V2x (38) 
2 

then 
ckT 

r = (39) 
2 

Hence, provided it can be deduced that 6AG is 
positive, V can be derived by employing the plot 
suggested by Equation 3 0. 

Returning to the original formulation sum- 
marized in Section 2.1 we have 

D 
0 i = ~00 

(40) 

: "  ( . 0 0 2  ..... 0 0 0 + w~a + Naw 12(Vx2 + V21)Ao/kT 

Hence, a plot of ai against Oo should be a straight 
line through the origin having as gradient: 

M' = 1 + N~ + V21) 
(1 + 6001/ ~ 

, N~ V21; -a 1 (41) 

The reason why Equations 30 and 40 are 
apparently in conflict can be traced to the employ- 
ment of the condition expressed by Equation 9 in 
the derivation of Equation 40. Equation 30 is not 
subject to the condition expressed in Equation 9. 
A oi against eo plot can therefore provide only a 
rough check on the value of M. 

2.4. Double loading experiments 
On a previous occasion we have employed double 
loading experiments in which a specimen is 
allowed to stress-relax to equilibrium then re- 
loaded to the original stress, o0 (see Fig. 4) [24]. 
We are now able to analyse this according to the 
site model theory. 

Suppose that the equilibrium state correspond- 
ing to the first deformation is reached when the 
site population has changed by AN~, a so that the 
Site 1 population has become 

No (Oo-- el, 1) (42) 
NI,~ = N ~  AN= 1 = Act 

where oi, 1 is the deformation-induced internal 
stress. 

By the same process as before we may now 
derive an equation describing stress relaxation 
after a second loading in terms of the further site 
population change, (AN'), beginning at the time of 
re-loading 

dAN'+ A~V,(wo + coo ) = N060o2 o 
dt 

On substituting AN' = (a0--o)/Ao into Equation 
43 we obtain 

\ 1  

dt + N ~ 1 7 6 1 7 6  Va2 +Y21]/ i - , ,  
(2Oo - o o = ai, 1)(6o12 + w21)- (44) 

Hence, when da/dt-+ 0 we find the new internal 
stress level is 
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Figure4 Schematic diagram of a 
double loading experiment in which 
stress relaxation from an initial stress, 
%, is allowed to proceed to equilib- 
rium, ( a = a i ,  l) , then at t = t '  the 
deformation is suddenly increased to 
restore the stress to a0, and stress 
relaxation is allowed to proceed to a 
new equilibrium, (a = ai ,  2). 

(2.oo- oi)(~o~ + ~o) 
ai,2 = 

~oo + ~o + NOaaa,% (V~2 
+ V21) 
kr  (45) 

therefore, 

0"i"2 = 2 -- ai, 1 _ 2 1 . (46) 
ai, ~ ao 1 + M 

The assumption used previously [24] that the 
deformation-induced internal stresses ai, 2 and el, 1 
are related as a i ,2=  2ai, 1 is therefore only an 
approximation. 

2.5. L imi tat ions and approximat ions 
In this section the several approximations 
employed in the derivations presented above will 
be examined. 

2.5. 1. Range of validity of  Equation 7 
There are two approximations used in the deriva- 
tion of Equation 7 that require justification. One 
is that [1 ,2]  

/ 
i.e., / 

~AG o 

(9) 
t~ven if we retain the possibility that AN may be 
a significant fraction of  N ~ Condition 9 is seen to 
hold as long as V12 and V21 are fairly similar, as 
expected, and likewise co~ and co~ are fairly simi- 
lar. On the other hand if ~AG is significant Con- 
dition 9 may not hold. In this case an additional 
term containing the product a AN enters Equation 
7, leading to a term in o 2 in Equation 10. The 
modified equation can be solved in a fairly 
straightforward manner and will be dealt with else- 
where [25]. 

The other condition that must be fulfilled is the 
one given in Equation 8. From the analysis of data 
obtained in our own laboratory [23, 26] and from 
a review of  data appearing in the literature and 
appraised according to the viewpoint put forward 
in this paper, we consider that a reasonable value 
for V is of the order of  3 0 0 x  10-3~ 3 (i.e. 
300A 3) for polystyrene or for polymethylmeth- 
acrylate�9 For stress relaxation tests conducted at a 
slightly elevated temperature, (say 320K) ,  we 
therefore estimate that 

V 
k--T ~ 70 X 10-9m2N -1. (47) 

Hence, if  we insist that exp (Va/kT) must not 
exceed (1 + Va/kT) by more than 5% then 
o <_. 5 MN m -2. This lies within the range used in 
our experiments [23, 27] and might therefore be 
the source of  departure from the linearity which is 
predicted by the derivation when the approxima- 
tion given by Equation 8 is employed. 

2. 5. 2. Determination of activation volume 
In Section 2.3 a similar approximation to that dis- 
cussed above is employed, i.e. 

exp ~ 1 k T  ai. 
(8a)  

In this case the stress factor is qi rather than the 
time-variable a. Since we now have the sum 
(V12+ V21) instead of only a single activation 
volume, the limiting value of  oi giving a 5% 
departure from equality in Equation 8a will be 
approximately 2.5 MN m -2. Some of  our tests pro- 
duced a i values higher than this and we conclude 
that the part of the analysis given in Section 2.3 
may show discrepancies especially at very high 
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stresses. The exact shape of the relaxation curve 
may depart from that predicted by Equations 10 
and 12 at Oo values as low as 5 MNm -2. (All of 
these computations are based on the value V=  
300 x 10-a~ a and will need revision for activa- 
tion volumes of different magnitudes.) 

3. Comparison with the Kubat and Rigdahl 
analysis 

Kub~t and Rigdahl have introduced an analysis of 
stress relaxation in which a series of identical 
specimens are tested at different deformations and 
the data plotted as e against In t [21]. The gradient 
at the steepest point is then plotted against the 
initial stress eo ("KR plot"). They based their 
analysis on a power4aw description of stress relax- 
ation, namely 

o = ei)", (48)  

where E is the elastic modulus of the material and 
B and n are constant material parameters. This 
leads to the prediction that the KR plot will be a 
straight line. If o i has a "residual" component in 
addition to the deformation-induced internal stress 
then this line will intercept the eo axis at a 
position that is in some way representative of the 
overall residual stress distribution, [9, 21,28, 29]. 
Moreover the gradient of the KR plot is related to 
n through 

dF = n -hI(n-I), (49) 
dee 

where 

Now from Equation 12 we have 

--do Co-- oi 
d l n t  = (e -- ei)ln ( o - - ~ )  , (51) 

It can be shown that this has its maximum value 
when 

ln (O~ I = 1 (52) 
\e--Oil 

i.e. when (o -- el) = I/e (Co -- el), therefore 

1 
F = - ( co  - 0 0 .  (53)  

e 

Now oi is a function of o~ so we must write 

d F _  1 1 
doe e dao] 

1 (we2  + o 5021) 
e e[(~o~ o o o q'- O)21 ) "q" N1(.012/ko(gl2 ..4- V21)/kT] 

_ N _ o A o ( _ v , , +  v,,)]-' 
e e [ 8AG~[ " l 1 +kT~l + exp- -~ -  )J (54) 

It is of interest to examine the temperature depen- 
dence of this expression and to do this two cases 
must be considered. Firstly, we must consider the 
case in which the site population is allowed to 
equilibrate at the test temperature before applica- 
tion of the stress, ("Case I"); in this case it is 
necessary to take into account the temperature 
dependence of N ~ Secondly, ("Case II"), we 
assume that N O is a constant, that is, it is depen- 
dent only on the history prior to the stress relax- 
ation test, and that the temperature-dependent 
shift in population distribution that takes place 
during the period that the specimen is equilibrating 
at the test temperature prior to the stress relaxa- 
tion experiment can be neglected. It is expected 
that most practical cases will fall between these 
limits. 

3.1. Case I: N o equilibrates at the test 
tern peratu re 

The temperature dependence of N1 ~ is given by 

N_~= exp(SAG/kT) 
No 1 + exp (SAG/kT)' (55) 

where No is the total number of occupied sites 
(= N o + N ~ .  It follows that 

"~ ex2(1 + a/x) 2 

x -- - ~  ] exp ~ - ~ )  ---~- ] 

x (56 )  

where a =NoAo(V12+ V21) and x = {kT[1 + 
exp (8 AG/kT)] 2}/exp (8 AG/kT). (d/dT)(dF/doo) is 
negative for values of (SAG/kT) ~< 1.3 and positive 
for (8 AG/kT) > 1.31. 

For a test temperature of 40 ~ C it is thus predic- 
ted that (d/dT)(dF/doo) will be positive if SAG > 
0.035 eV ("~ 3.4 kJ reel-t). The discussion in Sec- 
tion 2.5.1 is clearly relevant here and the value of 
SAG at which (d/dT)(dF/dgo) equals zero may be 
subject to modification [25]. 

3.2. Case I1: N o is treated as a constant 
In this case 
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-dT ey2(1 + b/y) 2 

x l + e x p ~ - - ~ l - -  k---T ~ kT ]J' 

where b =N~ + Vzl) and y =kT[1  + 
exp(SAG/kT)]. It is evident that the departure 
from Case 1 is modest and the value of 6AG/kT 
at which this expression changes from negative to 
positive is very similar (~ 1.28). 

Before comparing these results with experi- 
mental data it should be noted that the signs and 
magnitudes derived above all depend on the 
validity of the particular energy barrier arrange- 
ment presented in Fig. 3, for it has been assumed 
that (V12 + V21) and SAG are both positive and 
these were originally defined as presented in that 
diagram. It is now necessary to consider the effect 
of having the situation depicted in Fig. 5 in which 
this time Site 1 is a higher energy than Site 2: the 
stress-aided direction is still 1 -+ 2, but SAG is now 
negative. For Case I, inspection of Equation 56 
shows that the sign of (d/dT)(dF/dao) changes at 
the same magnitude of SAG as for that obtained 
with the barrier arrangement of Fig. 3. On the 
other hand the Case II alternative, (Equation 57), 
is negative for all negative fAG. 

4. Orientation-dependence of stress-aided 
activation 

In the account of stress-aided activation outlined 
above it is implicit that each jumping element 
makes the same angle with the stress axis and that 

',X / , '  

SITE 1 SITE 2 

Figure 5 Two-site energy level diagram for the case in 
which stress aids motion from the site already possessing a 
higher energy level. The stress aided direction is again 
1 --r 2, but  this t ime Site 1 has a higher energy in the un- 
stressed state than Site 2, (ef. the case depicted in Fig. 3). 

each event relieves the stress by the same amount. 
While it is possible that in certain instances this 
may be a reasonable description, as for example 
with highly oriented polymers, it is clearly not 
applicable to an isotropic material. This has been 
recognized by Robertson [30] who replaced Vo 
by VocosO for the work done by the stress a 
during a transition between states, where 0 is the 
angle between the stress axis and the displacement 
vector representing the jump. We will now adapt 
the theory presented in Section 2.1, taking into 
account the effects attributable to elements lying 
at all possible orientations. In addition to the 
modification to the work term we must also 
replace Act by an orientation-dependent expres- 
sion, Aa cos 0, because jumps inclined to the stress 
axis will be less effective in relieving stress. Finally 
we must also choose an appropriate description of 
the distribution of elements as a function of orien- 
tation. 

It is convenient to begin with Equation 7. Let 
us define orientation with reference to the jump 
vector so that ~tN 0 is the site population change 
for elements having a jump vector at 0 to the stress 
axis and Nl~ is the initial Site 1 population for 
elements thus defined. Hence 

dAN~ + AdV0(~~ + eo~ 
dT 

= N~176 + V2a) ocos0d0.  (7a) 
kT 

For an isotropic polymer there will be a constant 
number of elements, 8No, per unit solid angle so 
that the fraction lying within a cone with semi- 
angle0 within dO will be proportional to 
2rrsin0d0 (Fig. 6). Hence 

~n/2 f"/2~No21r sinOdO = 2rcfNo, N~ N ,odO~ =,o 
(58) 

Hence 
8No = N~ (59) 

and 
N10 0 = N~ sin 0 ; (60) 

therefore, 

daNo + (~1o 2 + ~ g l ) ~ 0  
dT 

= N ~ 1 7 6  q- V21 ) sin 0 cos 0o 

kT 
We also have 

�9 ( 6 1 )  
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~. sing dO,/'" ~ \ ,  
tt I I  

Figure 6 For a spherically symmetric distribution of  
vectors the probability of  finding one inclined at an angle 
0 within dO to a chosen axis is proportional to the area of 
the ring dement that is defined by this condition, (i.e. 
2zrrsinOdO, where r is the radius of the sphere), i.e. 
f(O)dO ~ 27rrsin0d0. If we normalize such that 
fro ~2 f(O) dO = 1, then f(O) = sin 0. 

o = O o - - Z ( A o c o s 0 ) ~ f 0 d 0  

= o o - - A o  AN0cos0 d0 ; (62) 
Jo 

therefore, 

dAN~176176176 ' d t  oe 

(63) 

0 0 0 0 where p = Nlw12(V12 + V21)Oo/2kT, q = Nlcol~ x 
(V12 + V21)Ao/2kT and D = w~ + w~ as before; 
(see Equations 10 and 10a). The solution to Equa- 
tion 63 is 

p {1 -- exp [--(D + 2q/3)t] } sin 20 
A N 0 =  

D + 2q]3 
(64) 

This solution shows that this approach does not 
predict the existence of  a distribution of  time con- 
stants, for the factor (D + 2q/3) is independent of  
0. Thus although the fractional change in site 
population at equilibrium is very sensitive to the 
orientation of  the sample of  jumping dements 
under consideration, the rate of  approach to the 
stressed equilibrium state is not. 

On substituting Equation 64 in Equation 62 we 
find 
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Aop {1--exp[--(D+ 2q/3)l}. o = go D+2q/3 
(65) 

The stress asymptote at infinite time is once again 
found to have a magnitude proportional to go, 
(through its dependency on p); compare with 
Equation 12. The similarity in the two Equations 
12 and 65 can be seen by rewriting as 

_ C - - D  
D +  oo((____C__)exp(_Ct) (12a) o = cOO 

and 

o = go D+2q/3 +D+2q/3  

x exp [--(D + 2q/3)t] (65a) 

and substituting for C, D, p and q. 

5, Constant strain-rate tests 
5.1. Site model  analysis 
In this section we examine the constant strain-rate 
test and derive the stress-strain relationship pre- 
dicted by the site model theory taking into 
account site population distribution as before. The 
starting point is Equation 7, up to which point the 
analysis does not depend on the loading conditions 
[1,2] .  For constant strain-rate testing we have 

(l 
e = eu + 2 ~ A e  = - - +  ANAe, (66) Eu 

where eu is the unrelaxed strain, which is a func- 
tion of  the stress and can be obtained by dividing 
the stress by the unrelaxed modulus, Eu. Ae is the 
increment of  strain produced per unit change in 
site population. Therefore 

de 1 do d ~ V  
- + A e  - -  ( 6 7 )  

dt Eu dt dt 

Thus on substitution into Equation 7 we find 

Ae dt AeEu dt Ae (c~176 + co~1) 

,,o o .  V + = Jvlcol=t 12 g21)a (68) 
kT 

For a constant strain-rate test de/dt = ~ = constant 
and e = ~t, therefore 

dO+dt [ + + N~176 + V2OAeEul 
. 1  

= Eue + Euet(co~ + ~x).  (69) 

This is of  the form 



d__~a + C'o = E ~  + Eu~Dt. (70) 
dt 

If we solve this equation for the boundary con- 
dition t = 0, o = 0 we find, 

a = - ~ - e + E u ~  - ~ - - - ~  [ 1 - e x p ( - - C ' t ) ] .  

(71) 

This is identical to the solution for the standard 
linear solid depicted in Fig. 7 when deformed at a 
constant strain rate. i.e. 

Thus we identify DE~C' with El, and C'  with 
E=/p. i.e. 

Eu( % + 
= E 1 

[coo2 + coo o o + NI(-OI2(V12 + V21)Af~u/kT] 
(73) 

and 

w~ + co~1 o o +Nlco12(V12 + V21)Aa/kT =- E2/p. 

(74) 

But the unrelaxed modulus is equal to (do/de)e=o, 
i.e., 

Eu = E1 + E2 (75) 

and the incremental form gives 

Aa = EuAe. (76) 

Hence we can form 

I 

E 1 

] 
I 

Figure 7 The form of the standard linear solid used in this 
paper. 

+ ~ 

co~ + co~, + N~176 + V2OAo/kT 

E l  

E1 + E 2 "  
(77) 

On comparing the results of this section with those 
presented previously for creep and stress relax- 
ation [2] it is found that the standard linear solid 
gives identical results to the site model theory for 
creep, stress relaxation and constant strain rate 
testing. That is, not only is the form of the a(e), 
e(t)  or e(t) curves the same but also the same 
relationships of the parameters in the site model 
with the spring and dash-pot constants of the stan- 
dard linear solid must be made in each case [31]. 

5.2. Estimation of activation volume from 
constant strain-rate tests 

Two methods of estimating the (experimental) 
activation volume from constant strain-rate tests 
have been described by Pink and co-workers [16, 
18, 19]. In the first a series of tests are conducted 
at different strain-rates, each on a different speci- 
men. In the second, tests are conducted on a single 
specimen which is subjected to a sudden change in 
strain-rate to a new fixed value at some point dur- 
ing the test. These two methods will now be 
examined in the context of the site model theory. 

5.2. 1. F i rs t  m e t h o d  
The data can be presented as stress-strain charac- 
teristics as shown in Fig. 8. It is convenient to 
analyse the problem in terms of the standard linear 
solid, Fig. 7, as introduced above (Section 5.1). 
The equation of the a(e) characteristic is therefore 
given by 

o = E1e + / ~ [ 1  -- exp(--E2e/p~)]. (78) 

For a fixed value of e this leads to 

( lnq 
do ]e = [a --Ele --E2e exp (--E2e/pe)] -1. 

(79) 

I f  we now differentiate the right-hand side with 
respect to e we can determine the behaviour of the 
quantity (dln~/da)e evaluated for different de- 
formations. It is easily shown that (d/de)(dln~/ 
do)e is always negative and therefore the experi- 
mental actwation volume, [cc (d in ~)d~)e], de- 
creases as the deformation at which it is obtained 
increases. This is consistent with observations. 
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gradient = (6+ E 2) 

' in~cr~sing 

ient --E 1 

E 
Figure 8 Stress-strain curves for the standard linear solid, 
showing the strain-rate dependence. 

5.2.2. Second method 
In the method preferred by Pink and co-workers a 
sudden change in strain-rate from ~1 to ~2 is 
applied at some instant t = tl  during the test, [16, 
18, 19]. The activation volume derived from such 
a strain-rate change (SRC) experiment is taken to 
be 

kT In (e2/el) 
VsRc = o(tx + At) -- al(tx + A t ) '  (80) 

where a( t l  + At) represents the stress a short time, 
At, after the application of the change in strain 
rate, and ol(tx + At) is the value the stress would 
have at this time if the original strain-rate were 
maintained without change throughout. If we 
evaluate a ( t l  + At) -- o1(tl + At) for the standard 
linear solid of Fig. 7 we find 

o(tl  + At) -- el(t1 + At) = (e2 -- @1)(E1 + E2)At. 

(81) 
This predicts that if VSRC is evaluated for differ- 
ent stresses obtained by changing the strain rates 
then VSRC decreases as stress increases. 

6. Discussion 
The analysis of deformation behaviour presented 
here is based upon the two-site model theory and 
special attention has been paid to the population 
distribution. When this is taken into account it is 

found that the expressions commonly computed 
and called the "(experimental) activation volume" 
are predicted to be stress-dependent and not con- 
stants. The behaviour of these computed con- 
stants is generally in agreement with the predic- 
tions of the theory. It is seen that the use of 
expressions like [dln(--d)/do)].kT for the 
activation volume in the case of stress relaxation, 
for example, must be based on a false analysis 
since their derivation is based on the premise that 
the activation volume is a constant. Once it is 
found that d ln(--d) /da is not a constant the 
validity of the procedure disappears. 

The site model theory presented here does give 
a reasonable description of the general behaviour 
observed with polymers. Indeed it is predicted that 
the product of d ln(--d) /do and the effective 
stress should be a constant, within the limitations 
imposed by the mathematical approximations 
made in reaching this conclusion. Therefore this 
quantity is not material-specific and the data pre- 
sented by Kub~t and co-workers [7-11] becomes 
less remarkable when viewed from this standpoint. 
Departures from the predictions of the theory may 
sometimes be related to the mathematical approxi- 
mations used and it is important to test these 
whenever possible. On the other hand it is also 
true that the model may not always be applicable, 
as already mentioned in Section 1. The model 
addresses the case in which there are only two pos- 
sible sites for each deforming element so that on 
surmounting the energy barrier in one direction 
the only possible jump is one in the opposite direc- 
tion, back to the original state. In certain deforma- 
tion processes this model is clearly not appro- 
priate. Sometimes another jump of the same kind 
and in the same direction is possible, while in 
other cases consecutive energy barriers of different 
heights may exist. 

The theory gives rise to a linear viscoelastic 
solution, completely compatible with the standard 
linear solid [31 ]. As such it provides a theoretical 
foundation for the standard linear solid but at the 
same time will suffer from the same limitations. 
Fitting experimental data to spring and dash-pot 
model behaviour has long been practised and a 
simple three-element model is rarely found to be 
sufficient to imitate observations with any degree 
of precision, (see, for example, the series of papers 
by Eyring and co-workers [32-42]).  Again it must 
be emphasized that there are mathematical 
approximations employed in the site-model deriva- 
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t ion of  the differential equation that  coincides 

with the equation of  mot ion  of  the standard linear 
solid that  may not  always be valid, part icularly at 
high stress levels. Here, perhaps, then is a source of  

non-linear behaviour [25]. 

A clear deficiency o f  the theory is that  it pro- 
duces a solution possessing a single relaxation time 
only.  This is of  course inevitable with a theory in 
which it is assumed that  a single process with a 
single activation energy is responsible for the 
deformation.  Even taking into account the distri- 
but ion of  orientat ion of  the jumping elements does 
not  alter this. Stress relaxation results obtained in 
our own labora tory  [ 2 3 - 2 6 ,  28, 43] give much 
gentler slopes in a against In t plots than is deman- 
ded by  a single relaxation process, as is generally 
found. 

Finally it must  be emphasized that  the theory 
presented here is not  offered as an alternative to 
those in which it is a t tempted  to quantify the role 
of  free volume. Robertson [44, 45] has indicated 
how this might be done for relaxation behaviour 
following a temperature change while Matsuoka 
and co.workers [ 46 -49 ]  have suggested that 
stress-induced dilatation has an important  effect 
on the stress relaxation and other mechanical 
properties of  polymers.  The purpose of  this paper 
is instead an a t tempt  to t idy up some o f  the 
apparent  anomalies found in the literature based 
loosely on the Eyring approach.  As pointed out  by  
Macedo and Litovitz [50] a suitable combinat ion 
of  both  approaches is probably required to 
properly account for the viscoelastic propert ies of  

real materials. 

7. Conclusions 
The site model  theory has been developed taking 
into account populat ion distr ibution,  with the 
following results: 

(a) The deformation-induced internal stress fol- 
lows natural ly from the site populat ion imbalance. 

(b) The stress dependence of  computed  values 
of  the "(experimental)  activation volume" can be 
understood.  An alternative method has been 
developed that  enables the estimation of  an 
"activation volume" that  is in keeping with the 
original definit ion for which this term was coined. 

(c) A theoretical  foundat ion for the standard 
linear solid is provided. 

(d) The activation parameters and experimental  
condit ions often employed sometimes invalidate 
approximations made in rate theory analysis and it 

is always necessary to check critically at each 

stage. 
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